
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 

350 

 

AN IMAGE COMPRESSION SCHEME BASED ON LAPLACIAN 

PYRAMIDS 

 

Catalin Ispas1* 

Costin-Anton Boiangiu 2 

 

ABSTRACT 

In this paper, we propose an image compression scheme based on the Laplacian image 

pyramids. First, the image is split into four sub-images repeatedly, in order to find an 

optimal split position based on their variance. The split point slides between a starting 

point and ending point and it’s stored at every step. After finding the optimal split point, 

the four sections determined by it are used to build four image pyramids, one for each 

sub-image. The data of each pyramid is stored in a custom file format and is compressed 

using BZ2. 

KEYWORDS: image compression, image resampling, summed area tables, Laplacian 

pyramid, bzip2, Lanczos filter, generalized pyramid 

 

1. INTRODUCTION 

Image compression has become an important subject nowadays, with the increase of 

content that can be found on websites or on the Internet, such as static images or videos 

and with the advent of mobile devices and video streaming. The desire to make an eye-

catching website also brings the problem of transmitting that content in a timely manner, 

since users don’t like to wait for it to be delivered most of the times or expect the content 

to be delivered in an imperceptible timeframe. 

Laplacian pyramids as means of image compression were introduced by Peter J. Burt and 

Edward H. Adelson, in the paper “The Laplacian Pyramid as a Compact Image Code” [4]. 

A Gaussian pyramid (figure 1) is built by repeatedly downsampling the original image, 

then the Laplacian pyramid is constructed by calculating the difference between the image 

on level L of the Gaussian pyramid and the upsampled version of the one at level L+1 [1]. 

Each error image resulting out of this difference is a level in the Laplacian pyramid. 

Compression is achieved by quantizing the pixel values in the error images. The original 

image can be recovered by upsampling and summing all the levels of the Laplacian 

pyramid [4]. 

                                                      
1* corresponding author, Engineer, ”Politehnica” University of Bucharest, 060042 Bucharest, Romania, 

ispas.catalin@ymail.com 
2 Professor PhD Eng., , ”Politehnica” University of Bucharest, 060042 Bucharest, Romania, 

costin.boiangiu@cs.pub.ro 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 
351 

 

 

Figure 1. Graphical representation of a Gaussian pyramid 

For image compression, a similar scheme was proposed by Costin Anton Boiangiu et al. 

in the paper “A Generalized Laplacian Pyramid Aimed at Image Compression” [6], where 

a scanning pattern is used to traverse the input image during the processing phase, in 

order to group similar pixels, which might help to obtain better compression, when a 

residual encoding algorithm such as Run-Length Encoding is used. Then a cross point is 

sought, to create four sections of the input image, which will be utilized to construct four 

Laplacian pyramids. 

The concept of using Laplacian pyramids for image compression is further expanded for 

video data, by Adrian Enache and Costin Boiangiu, in the paper “A Pyramidal Scheme of 

Residue Hypercubes for Adaptive Video Streaming” [5], where „hypercubes are built as 

residues between successive downsampling and upsampling operations over chunks of 

video data”. 

This paper proposes an image compression scheme based on splitting the original image 

into four sub-images, each encoded into its corresponding Laplacian pyramid. Splitting 

the image serves the purpose of separating the “negative spaces”, in order to obtain better 

compression. 

2. THE PROPOSED METHOD 

The first step of this proposed method is to search for an optimal point inside the input 

image, in order to split it into 4 sub-images. The search process starts off in the upper left 

corner of the image and ends in the lower right corner. The start point 𝑝𝑠 and end point 𝑝𝑒 

are defined as in (1) and (2), where w is the width and h is the height of the image: 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 

352 

 

𝑝𝑠(𝑥, 𝑦) = (
𝑤

4
,

ℎ

4
) (1) 

𝑝𝑒(𝑥, 𝑦) = (𝑤 −
𝑤

4
 , ℎ −

ℎ

4
)  (2) 

to avoid special cases in which a sub-image is too small to make any additional operations 

on it or its size is zero. 

Once these points are obtained, the input image is traversed from left to right, top to 

bottom. At each step, four sub-images are formed and the variance value for each is 

calculated using the formula: 

vj =  ∑ (xi −  μj)
2

i  j = 1. .4 (3) 

μj =  
∑ xii

nj
 (4) 

where 𝜇𝑗and 𝑛𝑗 are the mean value and number of pixels of sub-image “j”. The product of 

these four values is calculated and stored for later use. Due to performance reasons, a 

summed area table (integral image) was used to compute the four variance values (it’s 

also worth noting that the input image is treated as a 1D array). 

 

Figure 2. Calculating the sum ∑ 𝑥𝑖𝑖  (represented as S) for a sub-image s1, by using the values in the 

summed area table T, recovered from the indices A, B, C and D (where w and h are the width and 

height of the input image, s1.w and s1.h are the width and height of the sub-image s1, s1.x and s1.y 

are the (x, y) coordinates of the top left corner of sub-image s1 and T is the summed area table) 

Two tables are pre-computed from the input image: an integral image for simple sums and 

one for squared sum values. Instead of pixel intensity values, an integral image contains 

values which are the “the sum of the intensities of all pixels contained in the rectangle 

defined by the pixel of interest and the lower left corner of the texture image” [2]. For 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 
353 

 

example, to determine the sum ∑ 𝑥𝑖𝑖  from relation (4) for a particular sub-image, only a sum 

and two differences of values from the summed area table are necessary (see Figure 2). 

After the traversal has finished, the lowest variance product from the ones that were 

stored is utilized to pick the optimal split point (see Figure 3). 

 

Figure 3. Sub-images resulting from splitting the input image at the optimal split point 

The next step, once the optimal split point has been found, is to generate four Laplacian 

pyramids, one for each sub-image. In the case of one pyramid, the sub-image is first 

downsampled (and then upsampled) and the difference between the original image and the 

resampled one is computed (figure 4). This procedure is repeated until the size of the sub-

image has reached 1 pixel (or the compression scheme has become too inefficient, due to 

the fixed data overhead added on every stored level) then the process stops. 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 

354 

 

 

Figure 4. Obtaining a residue image R from the images I and J (produced by downsampling and 

upsampling I), this represents one level of the Laplacian pyramid 

The motivation behind this step is that, although more sample elements that in the input 

image are produced, most of the sample values “tend to be near zero, and therefore can 

represented with a small number of bits” [3]. BZ2 [8] was chosen to compress the error 

images which resulted after this step, because one of the compression techniques it uses is 

the Burrows-Wheeler transform [9], which further improves compression when it comes 

to repeating sequences of values, which might exist in this case. No further processing is 

done on the residues, each row of an individual error image is stored in the order 

described by a raster scanning pattern. 

Custom file formats 

Two custom file formats were used: one for the image pyramid and one for storing all the 

resulting four image pyramids. The PIFF (Pyramid Image File Format) contains 

information such as: the number of pyramid levels, an array with the widths and heights 

of the residues found at each level, an array containing the pixel data of all the residues 

and the array’s number of elements. Because the error images resulted during the pyramid 

construction phase can contain negative values, their pixel data is stored as short integers. 

The residue dimensions are kept in the following manner: odd index values contain the 

heights and even index values the widths of the residues (Figure 5). 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 
355 

 

 

Figure 5. Graphical representation of the array in which the residues dimensions are stored 

The MPIFF (Multi-Pyramid Image File Format) contains the original width and height of 

the input image and four pyramid structures like the one described earlier (Figure 6). 

 

 

Figure 6. The structure of the Pyramid Image File Format (up) and the Multi-Pyramid Image File 

Format (down) 

4. OBTAINED RESULTS 

During the testing phase, four grayscale versions of the following images were used: 

Lena, Baboon, Peppers and Jellybeans [7], all in uncompressed format (figure 7). For 

decimating the images, during the image pyramid construction phase, a scaling factor of 4 

was used and 3 types of filters were tested: Nearest Neighbour, Cubic and Lanczos. The 

compression algorithm used is BZ2. 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 

356 

 

Table 1. Performance of the proposed image compression scheme 

Image 

name 
Resolution Raw size Filter 

Compression 

(bytes) 

Compression 

factor 

Lena 512x512 257 kb 

Nearest 

neighbour 
207 955 1.2703132 

Cubic 183 140 1.4424374 

Lanczos 184 334 1.4330942 

Baboon 512x512 257 kb 

Nearest 

neighbour 
252 785 1.0450303 

Cubic 238 876 1.1058792 

Lanczos 240 100 1.1002415 

Peppers 512x512 257 kb 

Nearest 

neighbour 
210 266 1.2563514 

Cubic 189 912 1.3910021 

Lanczos 191 396 1.3802169 

Jellybeans 256x256 65.7 kb 

Nearest 

neighbour 
37 477 1.7975825 

Cubic 33 148 2.0323398 

Lanczos 33 868 1.9891342 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 
357 

 

  

  

Figure 7. The four images used to test our compression scheme (left to right, top to bottom): 

Baboon, Lena, Peppers, and Jellybeans (Source: The USC-SIPI Image Database) 

5. CONCLUSION 

In this research paper, an image compression scheme based on Laplacian pyramids was 

proposed. The best results were obtained on images that contain negative spaces, such as 

the image “Jellybeans”. The algorithm could be further improved by introducing space 

filling curves, which could help attain better compression, by grouping similar pixels [6]. 

Also worth trying is finding a better way of encoding negative values, rather than using 

short integers to store negative values. 

REFERENCES 

[1]  Jeff Perry, Image compression using Laplacian pyramid encoding, C/C++ Users 

Journal, volume 15, issue 12, pp. 35-47, Dec. 1997. 

[2]  Franklin C. Crow, Summed area tables for texture mapping, Computer Graphics, 

volume 18, number 3, pp. 207-212, July 1984. 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT 

 

358 

 

[3]  E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt , J. M. Ogden, Pyramid 

methods in image processing, RCA Engineer, Volume 29-6, pp. 34-41 Nov/Dec 

1984. 

[4]  Peter J. Burt, Edward H. Adelson, The Laplacian Pyramid as a Compact Image 

Code, IEEE Transactions on Communications, volume 31, issue 4, pp. 532-540, 

April 1983. 

[5]  Adrian Enache, Costin Boiangiu, A Pyramidal Scheme of Residue Hypercubes for 

Adaptive Video Streaming, International Journal of Computers and 

Communications, volume 8, pp. 128-133, 2014. 

[6]  Costin Anton Boiangiu, Marius Vlad Cotofana, Alexandru Naiman, Cristian 

Lambru, A Generalized Laplacian Pyramid Aimed at Image Compression, Journal 

of Information Systems & Operations Management, volume 10, number 2, pp.327-

335, December 2016. 

[7]  The USC-SIPI Image Database, USC University of California, Available online, 

retrieved from: http:// sipi.usc.edu/ database/ database.php? volume=misc, 

Accessed at: 30 May 2017. 

[8]  BZIP2 Homepage, Retrieved from: http:// www.bzip.org/ index.html, Accessed at: 

30 May 2017. 

[9]  M. Burrows, D.J.Wheeler, A Block-sorting Lossless Data Compression Algorithm, 

Digital Systems Research Center, Research Report 124, May 1994. 

 

 


